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Abstract—Simultaneous and continuous joint angle esti-
mation plays an important role in motion intention recogni-
tion and rehabilitation training. A surface electromyography
(sEMG) state-space model is proposed to estimate simul-
taneous and continuous lower-limb-joint movements from
sEMG signals in this article. The model combines the forward
dynamics with Hill-based muscle model (HMM), making the
extended model capable of estimating the lower-limb-joint
motion directly. sEMG features including root-mean-square
and wavelet coefficients are then extracted to construct a
measurement equation used to reduce system error and
external disturbances. With the proposed model, unscented
Kalman filter is used to estimate joint angle from sEMG sig-
nals. In the experiments, sEMG signals were recorded from ten subjects during muscle contraction involving three lower-
limb-joint motions (knee-joint motion, ankle-joint motion, and simultaneous knee-ankle-joint motion). Comprehensive
experiments are conducted on three motions and the results show that the mean root–mean–square error for knee-joint
motion, ankle-jointmotion, and simultaneousmotion of the proposedmodel are 5.1143◦, 5.2647◦, and 6.3941◦, respectively,
and significant improvements are demonstrated compared with the traditional methods.

Index Terms— Surface electromyography (sEMG), muscle model, feature extraction, continuous joint motion.

I. INTRODUCTION

IN HUMAN-MACHINE interaction (HMI), surface elec-
tromyography (sEMG) is an ideal signal source for
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controlling robot or intelligent limb through human motion
intention, because it is easy to be recorded and contains suf-
ficient human body’s movement information [1]–[4]. Discrete
action control is a common way to control artificial limbs, typ-
ically including 4–10 fixed hand movements or hand gesture
(clench the hand, stretch the palm, etc.) [5]. Zhang et al. [6]
proposed a framework based on accelerometer and sEMG
sensors to distinguish 18 kinds of hand gestures, and achieved
high recognition rate. Discrete action control based on sEMG
is a simple and robust control method. But it can only predict
discrete limb actions and cannot recognize the continuous vari-
able (e.g., angle and acceleration in continuous joint motion)
and simultaneous joint motion. Therefore, the robot and arti-
ficial limb controlled by discrete action cannot complete the
simultaneous multi-joint motions continuously and smoothly.
However, forecasting the continuous motion variables is the
key to achieve smooth control of the intelligent limb [7], [8]
in the field of rehabilitation medical robots.

Currently, many achievements have already been made in
estimating continuous joint movement. Chen et al. [9] used
Multi-Feature Fusion with Random Forest (RF) to estimate the
ankle joint angles, compared to BP neural network algorithms,
the training speed of RF was far faster, while the accuracy
of the estimation was similar. Chen et al. [10] proposed a
simple-structure temporal information-based model to estimate
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upper limb motion, the results showed that the estimation accu-
racy of the model was better than the multilayer perception
model. Li et al. [11] utilized sEMG signals to calculate the
endpoint stiffness of human arm, and manipulate the robot
arm. Xiao et al. [12] proposed a grey features weighted support
vector machine (GFWSVM) to estimate elbow joint angle, and
the result showed that the proposed algorithm had the better
performance compared to BP, the radial basis function (RBF)
and scaled conjugate gradient (SCG) neural network. They are
based on data-driven algorithms. Some researchers explored
the possibility of building the continuous estimation of joint
angles from musculoskeletal models based on EMG [13]–[15].
The control strategy based on the physiological muscle model
is that by simulating the control of human muscles, it may
better mimic movement of human limb joint than data-driven
algorithms, thus may obtain higher estimation accuracy.

Hill-based muscle model (HMM) is the one of physiological
muscle model estimating continuous joint motion. A sEMG-
based forward dynamics model which consists of HMM,
muscle activation dynamics, and joint forward dynamics was
proposed in [16]. This model involves many physiological
parameters and is hard to calculate, thus limiting its practical
applications. On this basis, Fleischer and Hommel [17] devel-
oped a simplified model for controlling extremity exoskeleton
and then constructed a calibration process to optimize the
estimation, which made some physiological parameters of
model easy calculate. HMM is the most frequently used
muscle model to estimates continuous joint motion, which
however faces two challenges. First, HMM involves many
complex physiological parameters. These parameters are diffi-
cult to identify and computationally heavy, making simplified
models a favorite alternative. However, it introduces errors and
degrades the estimation accuracy. Second, HMM is often used
to calculate the joint torque directly from sEMG signals [18].
For continuous estimations of joint motion, the motion states
(e.g. angular velocity and angle) are calculated from the
sEMG-recognized torque indirectly. Thereby it brings accu-
mulated errors and worsens the estimation accuracy.

To address the above challenges, this study developed
a new model that fuses the HMM and the joint forward
dynamics which can estimate the simultaneous and continuous
multi-joint motion. The new model can calculate the joint
motion from sEMG signals directly. Two sEMG features,
RMS and wavelet coefficients (WC), are proposed to build
the measurement equations. Then, a sEMG state-space model
is created to estimate knee-joint angle, ankle-joint angle, and
simultaneous knee-ankle-joint angle.

II. MATERIALS AND METHODS

A. Data Acquisition
In the process of rehabilitation training, the flexion-

extension of knee-joint and ankle-joint are common reha-
bilitation exercises. Fig. 1 illustrates the experimental setup.
sEMG signals were measured from biceps femoris (BF),
quadriceps femoris (QF), vastus lateralis (VL), vastus medialis
(VM), gracilis (GR), tibialis anterior (TA), and gastrocnemius
(GA), which are muscles relevant to lower limb motions.
The experiment was carried out in 2 sections: with load 3kg

Fig. 1. Selection of relevant muscles and movement specification.
(a) Relevant muscles in the experiments. (b) Movements in real-world
scenes. (c) Time specification for the movements.

(The 3kg dumbbell is tied to the ankle of subject) and without
load. In each section, subjects completed two types of joint
motion alternately, which were knee joint flexion-extension,
ankle joint flexion-extension and simultaneous motion of knee
joint and ankle joint.

Trigno™Wireless EMG (Delsys Inc, Natick, MA, USA) was
used to record sEMG signals. It provided 8-channel sEMG
acquisition, a 16-bit resolution, a bandwidth of 20–450 Hz,
and a baseline noise less than 1.25 μV. In the experiments,
the sEMG signals were sampled at 2000 Hz. Codamotion
(Charnwood Dynamics Limited, UK) was used to measure
real-time joint-angle information. It is a piece of motion
capture and analysis equipment which can obtain movement
information of the object with active infrared.

Ten healthy subjects (five males and five females,
23±2 years old, weighing 50–70 kg) were tested in the
experiments. All the subjects read and signed an informed
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Fig. 2. (a) sEMG sensors arrangement. (b) experiment scenarios: knee
joint flexion-extension motion and ankle joint flexion-extension motion.

consent form approved by an institutional review board.
As shown in Fig. 2, sEMG signals were measured by surface
electrodes. Each subject completed the action of knee joint
flexion-extension, ankle joint flexion-extension, and simul-
taneous motion in 10s, and repeated four times with and
without the load (3kg), respectively. The subjects were given
an appropriate rest time after each trial to reduce muscle
fatigue.

B. Data Preprocessing
sEMG signals are very weak, nonstationary, and random,

and its effective frequency is 10-500Hz. Noise during the
acquisition process of sEMG, 1) electronic equipment inherent
noise, whose frequency ranges within zero to thousands of
hertz. 2) environmental noise, it is mainly due to the capacitive
coupling of the instrumentation and of the subject with power
supply and the main frequency is 50Hz. 3) motion artifact
caused by the relative movement of the surface of sensor and
the skin in the experiment. To eliminate the inherent noise and
motion artifacts, a bandpass filter (20-450Hz) was selected in
the experiment.

The sampling frequency of joint-angle is much lower than
that of sEMG, 100Hz for the former compared to 2000 Hz
for the latter. To keep sEMG signals consistent with joint-
angle signals, the features of every 20 data sequences of raw
sEMG were extracted. After that, the subsampling frequency
of sEMG signals was changed from 2000Hz to 100Hz.

C. sEMG State-Space Model
1) Hill-Based Muscle Model: The muscle activation model

transforms sEMG signal to muscle activation. The neural
activation was calculated from preprocessed sEMG signal
through a recursive filter [19]. The muscle activation a(k) can
be described as follows [20],

a(k) = eA·u(k) − 1

eA − 1
(1)

where u(k) is the neural activation, k is the time, A is a
nonlinear shape factor which can define the curvature.

Fig. 3 illustrates a simplified HMM. The HMM consists of
a contractile element which produces the active muscle force

Fig. 3. Hill-based muscle model.

Fm
A and a parallel elastic element which produces the passive

force Fm
P . The model can be described as follows:

Fm = Fm
P + Fm

A (2)

The passive muscle force Fm
P is described as follows:

Fm
P = fP (l) · Fm

0 , l = lm/ lm
0 (3)

where fP (l) is the normalized passive force-length relation-
ship, Fm

0 is the maximum isometric force, l is the normalized
fiber length, lm is the fiber length, and lm

0 is the optimal fiber
length.

The active muscle force Fm
A is described as follows,

Fm
A = fA(l) · fV (v) · a(k) · Fm

0 , v = vm/vm
0 (4)

where fA(l) is the normalized active force-length relationship,
fV (v) is the normalized force-velocity relationship, v is the
normalized fiber velocity, vm is the contraction velocity, and
vm

0 is the maximum of contraction velocity.
According to the equations above, the musculotendon force

can be described as follows:
Fmt = [ fA(l) · fV (v) · a(k)+ fP (l)] · Fm

0 · cos(φ) (5)

where Fmt is the musculotendon force, φ is the pennation
angle.

The following simplifications can replace the biomechanical
parameters [21], [22]:

fA(l) =
{

q0 + q1 · l + q2 · l2, 0.5 ≤ l ≤ 1.5

0, otherwise

fP (l) = e10·l−15

fV (v) == 1 (6)

Through the force–length curve fitting algorithm described
in [21], and [22], q0, q1, q2 are set to be constants: q0 =
−2.12, q1 = 6.09, and q2 = −3.20.

The musculotendon length lmt can be described as follows:
lmt = lt + lm · cos(φ) (7)

where lt is the length of the tendon.
The simplifications of Fm

0 , l
t , lm

0 , φ can also replace the bio-
mechanical parameters [23], [24]. The musculotendon length
lmt can be simplified by a polynomial and described as a
first-order polynomial [25], [26]:

lmt = b0 + b1 · θ (8)
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where θ is the joint angle, b0 and b1 are constants. Then,
we get the moment arm r as follows:

r = ∂lmt (θ)

∂θ
= b1 (9)

Then the joint moment τ can be described as follows:
τ = Fmt · r (10)

2) EMG–Driven Joint Motion Model: The angular acceleration
is described as follows:

θ̈ = 1

Ie
· (τ − τeg), τeg = τegm · sin(θ) (11)

where Ie is the moment of inertia, which can be assumed as
constant for fixed load, τeg is the gravity torque, and τegm is
the maximum of τeg .

By combining the equations above, the angular acceleration
θ̈ can be described as follows:
θ̈=(s0+s1 · θ+s2 · θ2) · a(k)+s3 · es4·θ−s5 · sin(θ) (12)

where si (i = 0, 1, . . . , 5) are constants computed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s0 = k0 · Fm
0 · b1 · cosφ

Ie
+ k1 · Fm

0 · (b0 − lt ) · b1

lm
0 · Ie

+k2 · Fm
0 · (b0 − lt )2 · b1

(lm
0 )

2 · Ie · cosφ

s1 = k1 · Fm
0 · (b1)

2

lm
0 · Ie

+ 2 · k2 · (b0 − lt ) · (b1)
2

(lm
0 )

2 · Ie · cosφ

s2 = k2 · Fm
0 · (b1)

3

(lm
0 )

2 · Ie · cosφ

s3 = Fm
0 · b1 · cosφ

Ie
· exp

(
10 · (b0 − lt ) · (b1)

2

lm
0 · cosφ

− 15

)

s4 = 10 · b1

lm
0 · cosφ

, s5 = τegm

Ie

(13)

Then, we obtain the joint motion model in discrete time as
follows:⎧⎪⎨
⎪⎩
θ̈k+1 =(s0 + s1 ·θk +s2 ·θ2

k ) · a(k)+ s3 · es4·θk −s5 ·sin(θk)

θ̇k+1 = θ̇k + θ̈k · Ts

θk+1 =θk + θ̇k · Ts

(14)

where Ts is the sampling time, θ̇k is the joint angular velocity,
and θk is the joint position.

3) EMG Features and State-Space Model: The simplified
EMG-driven joint motion model involves two problems. First,
the model omits certain physiological parameters. Second,
the biomechanical parameters are variable in virtue of different
conditions of the body state. These problems cause accumu-
lative errors in the recursive calculation of the joint angle. To
eliminate the accumulative errors, we put forward a measure
equation providing the joint angle measurements as feedback,
which then lead to a sEMG state-space model. We built the
measure equation by RMS and WC in this study.

Xrms =
√√√√ 1

N − 1

N−1∑
i=0

x2
i (15)

N = Twin/Temg (16)

where Xrms is RMS, x2
i is the data sequences, N is the size

of a time window, Twin is the time window length, and Temg

is the sampling period of sEMG.
WC was extracted by discrete wavelet transform:

f (t) = AJ +
∑

j≤J
D j

AJ =
∑

j>J
D j

D j =
∑

k∈Z
α j,kφ j,t(t) (17)

where f (t) is the sEMG signals at level j , Z is the positive
integer, α j,k is WC, and φ j,t (t) is a mother wavelet function.

The sEMG signal x(n) = C D1+C D2+C D3+C D4+C A4
was decomposed to four layers by the db3 wavelet, then the
absolute value of C A4 is regarded as the WC feature of sEMG
signal.

To relate sEMG features with the joint motion, the following
second-order polynomial was used as the fitting function:

yu
k =cu

0 +cu
1 ·θ̇k +cu

2 ·θk +cu
3 ·θ̇2

k +cu
4 ·θ2

k +cu
5 ·θ̇k ·θk (18)

where u = 1,2; cu
i (i = 0, 1, . . . , 5) are constant parameters.

y1
k and y2

k represent the RMS and WC at time k.
By combining the equations above, the nonlinear expression

of the model was obtained:{
xk+1 = f (xk, ak)+ ωk

yk+1 = h(xk+1)+ υk+1
(19)

f (xk, ak)

=
⎡
⎣ (s0 + s1 · θk + s2 · θ2

k ) · ak + s3 · es4·θk − s5 · sin(θk)

θ̇k + θ̈k · T
θk + θ̇k · T

⎤
⎦

(20)

h(xk)

=
[

c1
0 + c1

1 · θ̇k + c1
2 · θk + c1

3 · θ̇2
k + c1

4 · θ2
k + c1

5 · θ̇k · θk

c2
0 + c2

1 · θ̇k + c2
2 · θk + c2

3 · θ̇2
k + c2

4 · θ2
k + c2

5 · θ̇k · θk

]
(21)

where xk = [θ̈k θ̇k θk]T , yk = [y1
k y2

k ]T , ak = a(k), ωk is the
process noise, and υk is the measurement noise.

4) The Interference Rejection of External Load: Because the
muscle activation, RMS, and WC are all influenced by the
external loads, we used an interference rejection algorithm of
external load (IRL) to solve the problem:

ψ(m) = λ0 + λ1 · m + λ2 · m2 (22)

where ψ(m) is the relationship between external load m and
the maximum value of EMG state, which includes EMG
signal e(k), RMS, and WC, λi (i = 0, 1, 2, 3) are constant
coefficients to be calculated [27].

Then, we get the normalized features:

RMSn = RM S

ψRM S(m)
, WCn = WC

ψW C(m)
(23)

where ψRM S(m) and ψW C(m) are RMS and WC at the
external load m, respectively.
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Fig. 4. (a) Raw sEMG signal of BF, QF, VL, VM, GR and angle signal of knee-joint motion. (b) the RMS and WC features of QF with load, QF without
load, VL with load and VL without load.

5) Unscented Particle Filter: Based on the proposed motion
model, we used the unscented Kalman filter (UKF) to estimate
the joint motion [28]. The UKF extracts 2nx + 1 sigma points
from the Gaussian and passes these through the nonlinear state
and measurement functions. The UKF can be summarized as
follows:

Calculate the sigma points:
X0 = x̄, Xi = x̄ + (

√
(nx + λ)Px )i (i=1, . . . , nx )

Xi = x̄ − (
√
(nx + λ)Px )i (i = nx , . . . ,2nx )

W (m)
0 = λ

(nx + λ)
, W (c)

0 = W (m)
0 + (1 − α2 + β)

W (m)
i = 1

2 · (n + λ)
, λ = α2(nx + κ)− nx (24)

where nx is the dimension of x ; x̄ and Px are the mean and
covariance of x , respectively; κ is the scaling parameter; and
α, β are the control parameters.

Sigma points:
Xa

t−1 = [x̄ a
t−1x̄ a

t−1 ±
√
(na + λ)Pa

t−1] (25)

Time update:

X x
t |t−1 = f (X x

t−1, Xvt−1), x̄t |t−1 =
2na∑
i=0

W (m)
i X x

i,t |t−1

Yt |t−1 = h(X x
t−1, Xn

t−1), ȳt |t−1 =
2na∑
i=0

W (m)
i Y x

i,t |t−1

Pt |t−1 =
2na∑
i=0

W (c)
i [X x

i,t |t−1 − x̄t |t−1][X x
i,t |t−1 − x̄t |t−1]T (26)

where Yi = g(Xi ) and y = g(x) is a non-linear transforma-
tion.

Measurement update:

Pyt yt =
2na∑
i=0

W (c)
i [Yi,t |t−1 − ȳt |t−1][Yi,t |t−1 − ȳt |t−1]T

Pxt yt =
2na∑
i=0

W (c)
i [X x

i,t |t−1 − x̄t |t−1][Y x
i,t |t−1 − ȳt |t−1]T ,

Kt = Pxt yt P−1
yt yt

x̄t = x̄t |t−1 + Kt (yt − ȳt |t−1), Pt = Pt |t−1 − Kt Pyt yt K T
t

(27)

III. EXPERIMENTAL RESULTS

Ten subjects were conducted with two different situations,
with load (3kg) and without load. Each subject completed
the action of knee joint flexion-extension, ankle joint flexion-
extension, and simultaneous motion in 10s, and repeated four
times. The feature dataset of the joint movement was input
into the proposed model. Five-fold cross validation was used
to perform the simulation.

Fig. 4 and Fig. 5 show the sEMG signals, joint angle, and
features of knee-joint and ankle-joint motions recorded from a
typical subject. The parameters which were identified offline
are list in Table I and II. Table I shows the identified values
concerning external loads. Table II shows the coefficients of
fitted polynomials for IRL.

Fig. 6 shows that both estimations based on HMM diverged
after seconds. For ankle, the angle cannot be estimated after
15s. And for knee, the angle cannot be estimated after 6.5s.
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Fig. 5. (a) Raw sEMG signal of TA, GA and angle signal of ankle-joint motion. (b) the RMS and WC features of TA with load, TA without load,
GA with load and GA without load.

TABLE I
IDENTIFIED PARAMETERS WITH LOAD AND WITHOUT LOAD

TABLE II
COEFFICIENTS OF THE FITTING POLYNOMIALS FOR IRL

However, this would not be the case with proposed model. The
sEMG state-space model overcame the error accumulation,
while improving the estimation accuracy significantly.

To verify the improvement of the load and IRL, we used
the sEMG state-space model to perform the UKF without
load and IRL, and then did the same experiment with load
and IRL. Fig. 7 shows the estimation results of knee-joint and
ankle-joint angles.

Also, we used the proposed model to estimate the joint
angles of simultaneous joint motion. Fig. 8 shows the
experimental results of the estimated simultaneous motion
angles.

From Fig. 7 and 8, we can see that the model with load
and IRL has better estimation results than that without load
and IRL in both individual joint motion and simultaneous
joint motion. The reason is that the amplitude of EMG will
increase with the load. Then the features extracted from the
EMG signals will be more obvious and IRL can rejection the
interference of external load, which can improve the estimation
accuracy.

The root–mean–square error (RMSE) and the correlation
coefficient (CC) were used to represent the angle-estimation
accuracy. Fig. 9 shows the mean RMSE of ten subjects for
simultaneous joint motion in the sections of with load or
without load, with IRL or without IRL. The performance
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Fig. 6. Real and estimated angle while using HMM and proposed model. (blue) Codamition measurement. (green) Estimated value while using
HMM. (red) Estimated value while using the proposed model.

Fig. 7. (a) The estimation results of ankle-joint motion without load and IRL. (b) The estimation results of ankle-joint motion with load and IRL. (c) The
estimation results of knee-joint motion without load and IRL. (d) The estimation results of knee-joint motion with load and IRL. (blue) Codamition
measurement. (red) Without load and IRL. (purple) With load and IRL.

evaluation of the models with load and IRL and without load
and IRL are shown in Table III.

From Fig. 9 and Table III, we can see that the load
and IRL can improve the estimation accuracy significantly.
And the mean RMSE for knee-joint motion, ankle-joint
motion, and simultaneous motion of the proposed model are
5.1143◦±0.4217◦, 5.2647◦±0.4963◦, and 6.3941◦±0.6173◦,
respectively, which indicates that the estimation results of
individual joint motion are better than that of simultaneous
motion. The reason is that a muscle can control different joint

motions and the influence of simultaneous joint motion on
relevant muscles is more complicated than that of individual
joint motion.

For comparison, five representative classification tech-
niques, backpropagation neural network (BPNN)[29], general-
ized regression neural network (GRNN) [30], fuzzy min-max
neural network (FMMNN) [31], GFWSVM [12] and nonlinear
auto regressive with exogenous inputs structure based multiple
layer perceptron neural network model (NARX-MLPNN) [32]
were considered and shown in Table IV.
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Fig. 8. (a) The estimation results of simultaneous motion without load and IRL. (b) The estimation results of simultaneous motion with load and
IRL. (blue) Codamition measurement. (red) Without load and IRL. (purple) With load and IRL.

Fig. 9. The mean RMSE of ten subjects for simultaneous joint motion in the sections of with load or without load, with IRL or without IRL. Ten
colored lines denote the accuracies of ten subjects. The numbers 1-10 denote the different datasets.

Table IV shows that the mean RMSE and CC for knee-joint
motion, ankle-joint motion, and simultaneous motion of the
proposed model are 5.1143◦ and 0.9531, 5.2647◦ and 0.9617,
6.3941◦ and 0.9513, respectively. The estimated effect of
BPNN is worst. Compared with NARX-MLPNN, the mean
RMSE of ankle-joint motion, and simultaneous motion of
the proposed model is smaller. Meanwhile, the mean RMSE
values of the two models differ little for knee-joint motion.
In conclusion, the estimation accuracy of the EMG state-space
model is better than other estimation methods.

IV. DISCUSSION

Simultaneous and continuous joint angle estimation plays
an important role in motion intention recognition and rehabil-
itation training. The research of simultaneous and continuous

joint angle is more valuable in the natural and stable control
of powered prosthesis, exoskeletons and rehabilitative robots,
compared with motion classification.

The purpose of this study is to build a sEMG state-space
model to estimate continuous joint movements from sEMG
signals. Here are some problems in the simplified EMG-driven
joint motion model: First, the model omits certain physio-
logical parameters. Second, the biomechanical parameters are
variable in virtue of different conditions of the body state.
These problems cause accumulative errors in the recursive
calculation of the joint angle. Therefore, we used a measure
equation providing the joint angle measurements as feedback,
then lead to the model. Since the muscle activation, the feature
extracted are all influenced by the external loads, an interfer-
ence rejection algorithm of IRL is used to solve the problem.
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TABLE III
THE EVALUATION FOR THE PERFORMANCES OF THE PROPOSED MODELS (RMSE, CC)

TABLE IV
COMPARISONS AMONG PROPOSED MODEL AND OTHER CLASSIFICATION (RMSE, CC)

The results show that the proposed model improved the
estimation accuracy of knee-joint motion, ankle-joint motion,
and knee-ankle simultaneous motion. The mean RMSE of
individual joint motion and simultaneous motion is less than
5.3◦ and 6.4◦, which also indicates that the sEMG state-space
model has high estimation accuracy. Moreover, compared
with the conventional regression methods, the proposed model
exhibits the best performance in the experiments.

However, there are several important limitations related
to this study that need further development to be used in
rehabilitation medical robots under real-world conditions. This
study collected sEMG and joint angle signals with specific
motions from healthy subjects. It is not known how well this

model would work in a real scenario with unscripted free-form
activities performed by elderly or real patients. Although, there
is no considerable difference in the characteristics of sEMG
between subjects with disabilities and without disabilities, the
amplitude and frequency of the signal will still influence the
estimation accuracy. These conditions need to be investigated
before using the proposed sEMG state-space model for clinical
purposes.

V. CONCLUSION

We integrated forward dynamics into HMM, and employed
sEMG features (RMS, WC) to construct measure equa-
tions, and consequently formed a sEMG state-space model
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to estimate continuous angle of knee-joint and ankle-joint.
A normalization algorithm named IRL was used to reject the
errors of angle estimation with load. Compared with traditional
methods for angle estimation, the proposed model was shown
to improve the estimation accuracy. In the future, the proposed
sEMG state-space model will be utilized to estimate the
simultaneous and continuous motions of multiple joints by
the sEMG signals and can be applied to rehabilitation robots
and exoskeleton robots.
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